Crystal structures, thermal evolution and luminescent properties of new compound Sr$_3$Bi$_2$(BO$_3$)$_4$ and Sr$_{3-x}$Ba$_x$Bi$_2$(BO$_3$)$_4$ solid solutions doped by Eu$^{3+}$

"Andrey P. Shablinskii1,2,*, Rimma S. Bubnova1,2, Alexei V. Povolotskii1, Lidiya G. Galafutnik2, Maria G. Krzhizhanovskaya, Stanislav K. Filatov$^{1}"

1 St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia
2 Institute of Silicate Chemistry of the Russian Academy of Sciences, Makarova Emb. 2, St. Petersburg, 199034, Russia

POSTER

Borates are perspective materials for luminescent matrix due to the wide bandgap, relatively easy synthesis and high thermal stability. Sr$_3$Bi$_2$(BO$_3$)$_4$ new compound and Sr$_{3-x}$Ba$_x$Bi$_2$(BO$_3$)$_4$ solid solutions were obtained by crystallization from melt. The samples contain crystals of Sr$_3$Bi$_2$(BO$_3$)$_4$ and amorphous phase. After successful synthesis, the end-members of the series of solid solutions were doped by Eu$^{3+}$ atoms.

Crystal structure of Ba$_3$Bi$_2$(BO$_3$)$_4$ was firstly investigated in [1]. Crystal structures of Sr$_3$Bi$_2$(BO$_3$)$_4$, Sr$_{1.35}$Ba$_{1.65}$Bi$_2$(BO$_3$)$_4$ and Sr$_3$Bi$_{1.66}$Eu$_{0.34}$(BO$_3$)$_4$ were solved and refined in this work to $R_1 = 0.051$, 0.059 and 0.067 respectively using single-crystal diffractometer Bruker APEX II, MoK$_\alpha$ radiation. For example, unit cell parameters of Sr$_3$Bi$_2$(BO$_3$)$_4$ are $a = 7.5107(5)$, $b = 16.2737(11)$, $c = 8.8163(5)$ Å, $V = 1077.59(12)$ Å3,
space group $Pnma$; there are three independent B atoms coordinated by three oxygen atoms and three sites for cations: M_1, M_2 and M_3. Site occupation factor of M_1, M_2 and M_3 was refined. All cation sites are coordinated by eight oxygen atoms.

The thermal behavior of Sr$_{3-x}$Ba$_x$Bi$_2$(BO$_3$)$_4$ solid solutions was studied using in situ high-temperature XRD in the range 25-800 °C by means of Rigaku Ultima IV powder X-Ray diffractometer (CuK$_\alpha$) with a high-temperature camera. According to the principles of high temperature crystal chemistry [2] for borates with triangle groups, maximal thermal expansion occurs along a axis and minimal – along c axis.

The emission spectra of Sr$_3$Bi$_2$(BO$_3$)$_4$:Eu are measured using Fluorolog-3 spectrophotometer. The (Sr$_{0.85}$Eu$_{0.1}$)$_3$Bi$_2$(BO$_3$)$_4$ has the strongest luminescence intensity.

The studies have been supported Russian Foundation of Basic Researches project №15-03-05845. X-Ray diffraction experiments were performed at the X-Ray Diffraction Center Of Saint-Petersburg State University.

Brief Biographical Notes

Andrey P. Shablinskii
shablinskii.andrey@mail.ru
Junior research scientist (Institute of Silicate Chemistry of RAS), PhD student (Saint Petersburg State University, Institute of Earth Sciences, Dep. of Crystallography)